Skip to content

zamba.models.efficientnet_models

Classes

TimeDistributedEfficientNet

Bases: ZambaVideoClassificationLightningModule

Source code in /home/runner/work/zamba/zamba/zamba/models/efficientnet_models.py
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
@register_model
class TimeDistributedEfficientNet(ZambaVideoClassificationLightningModule):
    _default_model_name = (
        "time_distributed"  # used to look up default configuration for checkpoints
    )

    def __init__(
        self,
        num_frames=16,
        finetune_from: Optional[Union[os.PathLike, str]] = None,
        **kwargs,
    ):
        super().__init__(**kwargs)

        if finetune_from is None:
            efficientnet = timm.create_model("efficientnetv2_rw_m", pretrained=True)
            efficientnet.classifier = nn.Identity()
        else:
            efficientnet = self.from_disk(finetune_from).base.module

        # freeze base layers
        for param in efficientnet.parameters():
            param.requires_grad = False

        num_backbone_final_features = efficientnet.num_features

        self.backbone = torch.nn.ModuleList(
            [
                efficientnet.get_submodule("blocks.5"),
                efficientnet.conv_head,
                efficientnet.bn2,
                efficientnet.global_pool,
            ]
        )

        self.base = TimeDistributed(efficientnet, tdim=1)
        self.classifier = nn.Sequential(
            nn.Linear(num_backbone_final_features, 256),
            nn.Dropout(0.2),
            nn.ReLU(),
            nn.Linear(256, 64),
            nn.Flatten(),
            nn.Linear(64 * num_frames, self.num_classes),
        )

        self.save_hyperparameters("num_frames")

    def forward(self, x):
        self.base.eval()
        x = self.base(x)
        return self.classifier(x)

Attributes

backbone = torch.nn.ModuleList([efficientnet.get_submodule('blocks.5'), efficientnet.conv_head, efficientnet.bn2, efficientnet.global_pool]) instance-attribute
base = TimeDistributed(efficientnet, tdim=1) instance-attribute
classifier = nn.Sequential(nn.Linear(num_backbone_final_features, 256), nn.Dropout(0.2), nn.ReLU(), nn.Linear(256, 64), nn.Flatten(), nn.Linear(64 * num_frames, self.num_classes)) instance-attribute
lr = lr instance-attribute
model_class = type(self).__name__ instance-attribute
num_classes = len(species) instance-attribute
scheduler = torch.optim.lr_scheduler.__dict__[scheduler] instance-attribute
scheduler_params = scheduler_params instance-attribute
species = species instance-attribute
test_step_outputs = [] instance-attribute
training_step_outputs = [] instance-attribute
validation_step_outputs = [] instance-attribute

Functions

__init__(num_frames = 16, finetune_from: Optional[Union[os.PathLike, str]] = None, **kwargs: Optional[Union[os.PathLike, str]])
Source code in /home/runner/work/zamba/zamba/zamba/models/efficientnet_models.py
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
def __init__(
    self,
    num_frames=16,
    finetune_from: Optional[Union[os.PathLike, str]] = None,
    **kwargs,
):
    super().__init__(**kwargs)

    if finetune_from is None:
        efficientnet = timm.create_model("efficientnetv2_rw_m", pretrained=True)
        efficientnet.classifier = nn.Identity()
    else:
        efficientnet = self.from_disk(finetune_from).base.module

    # freeze base layers
    for param in efficientnet.parameters():
        param.requires_grad = False

    num_backbone_final_features = efficientnet.num_features

    self.backbone = torch.nn.ModuleList(
        [
            efficientnet.get_submodule("blocks.5"),
            efficientnet.conv_head,
            efficientnet.bn2,
            efficientnet.global_pool,
        ]
    )

    self.base = TimeDistributed(efficientnet, tdim=1)
    self.classifier = nn.Sequential(
        nn.Linear(num_backbone_final_features, 256),
        nn.Dropout(0.2),
        nn.ReLU(),
        nn.Linear(256, 64),
        nn.Flatten(),
        nn.Linear(64 * num_frames, self.num_classes),
    )

    self.save_hyperparameters("num_frames")
aggregate_step_outputs(outputs: Dict[str, np.ndarray]) -> Tuple[np.ndarray, np.ndarray, np.ndarray] staticmethod
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
206
207
208
209
210
211
212
213
214
@staticmethod
def aggregate_step_outputs(
    outputs: Dict[str, np.ndarray]
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    y_true = np.vstack([output["y_true"] for output in outputs])
    y_pred = np.vstack([output["y_pred"] for output in outputs])
    y_proba = np.vstack([output["y_proba"] for output in outputs])

    return y_true, y_pred, y_proba
compute_and_log_metrics(y_true: np.ndarray, y_pred: np.ndarray, y_proba: np.ndarray, subset: str)
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
def compute_and_log_metrics(
    self, y_true: np.ndarray, y_pred: np.ndarray, y_proba: np.ndarray, subset: str
):
    self.log(
        f"{subset}_macro_f1",
        f1_score(y_true, y_pred, average="macro", zero_division=0),
    )

    # if only two classes, skip top_k accuracy since not enough classes
    if self.num_classes > 2:
        for k in DEFAULT_TOP_K:
            if k < self.num_classes:
                self.log(
                    f"{subset}_top_{k}_accuracy",
                    top_k_accuracy_score(
                        y_true.argmax(
                            axis=1
                        ),  # top k accuracy only supports single label case
                        y_proba,
                        labels=np.arange(y_proba.shape[1]),
                        k=k,
                    ),
                )
    else:
        self.log(f"{subset}_accuracy", accuracy_score(y_true, y_pred))

    for metric_name, label, metric in compute_species_specific_metrics(
        y_true, y_pred, self.species
    ):
        self.log(f"species/{subset}_{metric_name}/{label}", metric)
configure_optimizers()

Setup the Adam optimizer. Note, that this function also can return a lr scheduler, which is usually useful for training video models.

Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
def configure_optimizers(self):
    """
    Setup the Adam optimizer. Note, that this function also can return a lr scheduler, which is
    usually useful for training video models.
    """
    optim = self._get_optimizer()

    if self.scheduler is None:
        return optim
    else:
        return {
            "optimizer": optim,
            "lr_scheduler": self.scheduler(
                optim, **({} if self.scheduler_params is None else self.scheduler_params)
            ),
        }
forward(x)
Source code in /home/runner/work/zamba/zamba/zamba/models/efficientnet_models.py
60
61
62
63
def forward(self, x):
    self.base.eval()
    x = self.base(x)
    return self.classifier(x)
from_disk(path: os.PathLike, **kwargs: os.PathLike) classmethod
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
305
306
307
308
@classmethod
def from_disk(cls, path: os.PathLike, **kwargs):
    # note: we always load models onto CPU; moving to GPU is handled by `devices` in pl.Trainer
    return cls.load_from_checkpoint(path, map_location="cpu", **kwargs)
on_test_epoch_end()
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
259
260
261
262
def on_test_epoch_end(self):
    y_true, y_pred, y_proba = self.aggregate_step_outputs(self.test_step_outputs)
    self.compute_and_log_metrics(y_true, y_pred, y_proba, subset="test")
    self.test_step_outputs.clear()  # free memory
on_train_start()
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
162
163
164
165
166
167
168
169
170
171
172
173
def on_train_start(self):
    metrics = {"val_macro_f1": {}}

    if self.num_classes > 2:
        metrics.update(
            {f"val_top_{k}_accuracy": {} for k in DEFAULT_TOP_K if k < self.num_classes}
        )
    else:
        metrics.update({"val_accuracy": {}})

    # write hparams to hparams.yaml file, log metrics to tb hparams tab
    self.logger.log_hyperparams(self.hparams, metrics)
on_validation_epoch_end()

Aggregates validation_step outputs to compute and log the validation macro F1 and top K metrics.

Parameters:

Name Type Description Default
outputs List[dict]

list of output dictionaries from each validation step containing y_pred and y_true.

required
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
247
248
249
250
251
252
253
254
255
256
257
def on_validation_epoch_end(self):
    """Aggregates validation_step outputs to compute and log the validation macro F1 and top K
    metrics.

    Args:
        outputs (List[dict]): list of output dictionaries from each validation step
            containing y_pred and y_true.
    """
    y_true, y_pred, y_proba = self.aggregate_step_outputs(self.validation_step_outputs)
    self.compute_and_log_metrics(y_true, y_pred, y_proba, subset="val")
    self.validation_step_outputs.clear()  # free memory
predict_step(batch, batch_idx, dataloader_idx: Optional[int] = None)
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
264
265
266
267
268
def predict_step(self, batch, batch_idx, dataloader_idx: Optional[int] = None):
    x, y = batch
    y_hat = self(x)
    pred = torch.sigmoid(y_hat).cpu().numpy()
    return pred
test_step(batch, batch_idx)
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
201
202
203
204
def test_step(self, batch, batch_idx):
    output = self._val_step(batch, batch_idx)
    self.test_step_outputs.append(output)
    return output
to_disk(path: os.PathLike)

Save out model weights to a checkpoint file on disk.

Note: this does not include callbacks, optimizer_states, or lr_schedulers. To include those, use Trainer.save_checkpoint() instead.

Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
290
291
292
293
294
295
296
297
298
299
300
301
302
303
def to_disk(self, path: os.PathLike):
    """Save out model weights to a checkpoint file on disk.

    Note: this does not include callbacks, optimizer_states, or lr_schedulers.
    To include those, use `Trainer.save_checkpoint()` instead.
    """

    checkpoint = {
        "state_dict": self.state_dict(),
        "hyper_parameters": self.hparams,
        "global_step": self.global_step,
        "pytorch-lightning_version": pl.__version__,
    }
    torch.save(checkpoint, path)
training_step(batch, batch_idx)
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
175
176
177
178
179
180
181
def training_step(self, batch, batch_idx):
    x, y = batch
    y_hat = self(x)
    loss = F.binary_cross_entropy_with_logits(y_hat, y)
    self.log("train_loss", loss.detach())
    self.training_step_outputs.append(loss)
    return loss
validation_step(batch, batch_idx)
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
196
197
198
199
def validation_step(self, batch, batch_idx):
    output = self._val_step(batch, batch_idx)
    self.validation_step_outputs.append(output)
    return output

Functions