zamba.pytorch_lightning.utils¶
Attributes¶
DEFAULT_TOP_K = (1, 3, 5, 10)
module-attribute
¶
default_transform = transforms.Compose([ConvertTHWCtoCTHW(), transforms.ConvertImageDtype(torch.float32)])
module-attribute
¶
Classes¶
ZambaDataModule
¶
Bases: LightningDataModule
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
Attributes¶
batch_size = batch_size
instance-attribute
¶
multiprocessing_context: BaseContext = None if multiprocessing_context is None or num_workers == 0 else multiprocessing_context
instance-attribute
¶
num_workers = num_workers
instance-attribute
¶
predict_metadata = predict_metadata
instance-attribute
¶
prefetch_factor = prefetch_factor
instance-attribute
¶
train_metadata = train_metadata
instance-attribute
¶
video_loader_config = None if video_loader_config is None else video_loader_config.dict()
instance-attribute
¶
Functions¶
__init__(batch_size: int = 1, num_workers: int = max(cpu_count() - 1, 1), transform: transforms.Compose = default_transform, video_loader_config: Optional[VideoLoaderConfig] = None, prefetch_factor: int = 2, train_metadata: Optional[pd.DataFrame] = None, predict_metadata: Optional[pd.DataFrame] = None, multiprocessing_context: Optional[str] = 'forkserver', *args: Optional[str], **kwargs: Optional[str])
¶
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
|
predict_dataloader() -> Optional[torch.utils.data.DataLoader]
¶
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
112 113 114 115 116 117 118 119 120 121 122 |
|
test_dataloader() -> Optional[torch.utils.data.DataLoader]
¶
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
100 101 102 103 104 105 106 107 108 109 110 |
|
train_dataloader() -> Optional[torch.utils.data.DataLoader]
¶
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
76 77 78 79 80 81 82 83 84 85 86 |
|
val_dataloader() -> Optional[torch.utils.data.DataLoader]
¶
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
88 89 90 91 92 93 94 95 96 97 98 |
|
ZambaVideoClassificationLightningModule
¶
Bases: LightningModule
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
|
Attributes¶
lr = lr
instance-attribute
¶
model_class = type(self).__name__
instance-attribute
¶
num_classes = len(species)
instance-attribute
¶
scheduler = torch.optim.lr_scheduler.__dict__[scheduler]
instance-attribute
¶
scheduler_params = scheduler_params
instance-attribute
¶
species = species
instance-attribute
¶
test_step_outputs = []
instance-attribute
¶
training_step_outputs = []
instance-attribute
¶
validation_step_outputs = []
instance-attribute
¶
Functions¶
__init__(species: List[str], lr: float = 0.001, scheduler: Optional[str] = None, scheduler_params: Optional[dict] = None, **kwargs: Optional[dict])
¶
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
aggregate_step_outputs(outputs: Dict[str, np.ndarray]) -> Tuple[np.ndarray, np.ndarray, np.ndarray]
staticmethod
¶
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
206 207 208 209 210 211 212 213 214 |
|
compute_and_log_metrics(y_true: np.ndarray, y_pred: np.ndarray, y_proba: np.ndarray, subset: str)
¶
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
|
configure_optimizers()
¶
Setup the Adam optimizer. Note, that this function also can return a lr scheduler, which is usually useful for training video models.
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
|
forward(x)
¶
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
159 160 |
|
from_disk(path: os.PathLike, **kwargs: os.PathLike)
classmethod
¶
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
305 306 307 308 |
|
on_test_epoch_end()
¶
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
259 260 261 262 |
|
on_train_start()
¶
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
162 163 164 165 166 167 168 169 170 171 172 173 |
|
on_validation_epoch_end()
¶
Aggregates validation_step outputs to compute and log the validation macro F1 and top K metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
outputs |
List[dict]
|
list of output dictionaries from each validation step containing y_pred and y_true. |
required |
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
247 248 249 250 251 252 253 254 255 256 257 |
|
predict_step(batch, batch_idx, dataloader_idx: Optional[int] = None)
¶
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
264 265 266 267 268 |
|
test_step(batch, batch_idx)
¶
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
201 202 203 204 |
|
to_disk(path: os.PathLike)
¶
Save out model weights to a checkpoint file on disk.
Note: this does not include callbacks, optimizer_states, or lr_schedulers.
To include those, use Trainer.save_checkpoint()
instead.
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
|
training_step(batch, batch_idx)
¶
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
175 176 177 178 179 180 181 |
|
validation_step(batch, batch_idx)
¶
Source code in /home/runner/work/zamba/zamba/zamba/pytorch_lightning/utils.py
196 197 198 199 |
|